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Abstract 

A novel singular element is presented to evaluate the stress intensity factor of the 
through-thickness crack in this paper. The new element takes into account the 
special variation of the displacements around the intersection of the crack front 
and the free surface. The intersection between the crack front and the free surface 
is named singular point. The proposed element has a vertex which coincides with 
the singular point. Accurately capturing the distribution of displacements in the 
vicinity of the singular point is of crucial importance in the implementation of 
dual boundary element method (DBEM) for the through-thickness crack 
problems. The element with usual shape functions doesn’t lead to accurate 
solutions unless extremely fine meshes are used. With these new singular 
elements, more accurate results for the displacement filed around the singular 
point and the stress intensity factor can be obtained. Numerical examples have 
demonstrated the accuracy and efficiency of the proposed method. 
Keywords:  stress intensity factor (SIF); through-thickness crack; vertex 
singularity; dual boundary element method (DBEM) 

1 Introduction 

The through-thickness crack problem widely appears in engineering problem. 
Accurate evaluation of stress intensity factor (SIF) is of great importance for this 



problem. Many numerical methods have been proposed to evaluate SIF such as 
the finite element method (FEM), the extended finite element method (XFEM) 
and the boundary element method (BEM). Compared to FEM and XFEM, the 
BEM seems to be more attractive for its dimension reduction feature [1-2]. 
However, the conventional BEM cannot apply to crack problems directly, 
because a singular system of equations is always obtained for the coincidence of 
the crack boundaries. To overcome this difficulty, various methods within the 
scope of BEM have been presented, for instance the special Green’s method [3], 
the multi-domain techniques [4], the displacement discontinuity or dislocation 
method [5], the Galerkin symmetric method [6], a direct traction boundary 
integral equation method [7] and the dual boundary element method (DBEM) 
[8-12]. Among the above methods, the DBEM is a more promising method. 
The displacements around the crack front have square root variation of r, r being 
the distance to the crack front. The element with the usual shape functions which 
allow for polynomial variation only is not suitable for modelling crack front 
regions. Many researchers have proposed special crack tip element, including 
quarter-point elements [13] and mid-side node elements where special shape 
functions are introduced [14]. 
The intersection between the crack front and the free surface is named singular 
point. Little literature considers the special variation of the displacement filed 
around the singular point on the free surface, although the vertex singularity 
exists in the through-thickness crack problem [15-17]. Therefore, a novel 
singular element is proposed in the paper.  
The new singular element has a vertex which coincides with the singular point. 
These elements are collocated on the free surfaces which include the singular 
points rather than on crack surfaces. The vertex singularity is affected by many 
factors, such as the Poisson’s ratio, the thickness of the crack and so on [15-19]. 
But from the results in these literature, it can be seen that the vertex singularity 
approach square root of r in most cases. For simplicity, we design a new element 
which has square root variation to model the special displacement filed around 
the singular point. Numerical examples are presented to verify that our method is 
suitable for solving the through-thickness crack problems with different 
Poisson’s ratio. 
This paper is organized as follows. In section 2, the DBEM are described. 
Section 3 introduces the vertex singularity. The new singular element is 
presented in Section 4. Numerical examples are given in Section 5. The paper 
ends with conclusions in Section 6. 



2 The dual boundary element method 
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Figure 1: Cracked body. 
Consider a cracked body as shown in Fig. 1, with  and  referring to the 
lower and upper crack surfaces respectively, and S to the rest of the boundary. 
The displacement boundary integral equation in absence of body forces can be 
written as 
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where Ps and Q are the source point and the field point, respectively.  is a 

function of the geometry variation at the boundary point. 
ijc

ju  and jt  represent 

the components of displacement and traction.  and  are the Kelvin 

fundamental solutions for displacement and traction. The Kelvin fundamental 
solutions  and  are given by: 
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where r is the distance between the source point Ps and the field point Q; G, v 
and ij  represent the shear modulus, the Poisson’s ratio and the Kronecker delta, 

respectively; n denotes the unit outward normal vector at the point Q on the 
boundary. ni and nj are the components of the normal n, and 

, .i ir r x   , , j jr r x   . 

The traction boundary integral equation in absence of body forces can be written 
as 
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where  denotes one component of the unit outward normal vector at the 

point P
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ijk

*
ijkT



Kelvin fundamental solutions together with elastic constants. Expression for 
 and  are: *
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Traction equilibrium ( ) ( )k S k St P t P  
 is assumed on the crack faces. The 

kernels , ,  and  have following properties: *
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Thus a new pair of boundary integral equations can be obtained as follows: 
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where  represents the open displacement on the crack surface,  

and  represent the displacement and traction on the uncracked surfaces. 

Eq. (7a) is collocated on the uncracked boundary and Eq. (7b) is used on the 
lower crack surface. 
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It should be noted that Eqs. (7a) and (7b) can also be employed for the problems 
containing multiple crack surfaces in a finite space. For the problems containing 
multiple crack surfaces in an infinite space, only Eq. (7b) is required. This 
formulation has the advantage of a smaller system of equations than the 
conventional DBEM since only one of the crack surface needs to be discretized. 

3 The vertex singularity 

In this section, we introduce the vertex singularity at the singular point 
(intersection of the crack front and the free surface). Benthem (1977) [15], by 
using three-dimensional separation of variables for a quarter infinite crack in a 
half space, showed that a vertex singularity exists at the singular point. Then a lot 
of literature [16-19] has been presented to discuss the singularity order at the 



singular point, including analytic method and numerical method. The results 
from these papers show that the vertex singularity is close to square root of r in 
most cases. The following example can also illustrate this point. 
The displacements of a 3D through-thickness crack are simulated by finite 
element software ABAQUS with 2.44 million elements. The displacement U2 
around the crack front for different cross section along the thickness direction is 
shown in Fig. 2. The numbers 0~1.5 represent the distance of different cross 
section to the free surface. 0 denotes the free surface, and 1.5 is the middle cross 
section of the cracked body along the thickness direction. 
The displacements of the middle cross section in the vicinity of the crack front 
have square root variation of r. It can be seen from Fig. 2 that the displacements 
U2 of different cross section including the free surface have almost the same 
variation trend. This means that the displacements around the singular point on 
the free surface have similar square root variation. 

 
Figure 2: Variation of U2 with r for different cross section along the thickness 

direction. 

4 The new singular element 

From the previous section, it can be seen that the displacements around the 
singular point on the free surface have similar square root variation of r. But the 
accurate variation of the displacement field depends on the order of the vertex 
singularity. For simplicity, a new singular element which has square root 
variation is presented to model the special displacement filed around the singular 
point in this section. 



 

Figure 3: The position of the new singular element. 

 

Figure 4: The new triangular element. 
The new singular elements have a vertex which coincides with the singular point. 
These elements are collocated on the free surface rather than on crack surface as 
shown in Fig. 3. Let us assume that the singular point lies on node 2 of the new 
triangular element shown in Fig. 4. In order to get the desired square root 
variation, the shape functions of the new element should be of the following 
form: 
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The shape functions in Eq. (8) must satisfy the conditions: 
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for the discontinuous element in the ( ,   coordinate system, as illustrated in 

Fig. 4. Using Eq. (9) for each i in Eq. (8), a set of 3 3  linear system of 
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equations is obtained. Solving this system of equations will yield the coefficients 
i
ja . Assuming 0.25  , the shape functions for the new singular element are 

obtained as: 
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5 Numerical examples 

To verify the accuracy and efficiency of the proposed singular element, several 
examples are presented in this section. The stress intensity factors are evaluated 
by the following expressions: 
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where E is Young's modulus and  represents Poisson’s ratio. v bu , nu ,  

are projections of the crack open displacements on the local coordinate directions 
(normal, binormal and tangential) at the crack front as shown in Fig. 5. 
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Figure 5: Local coordinate system at the crack front. 
5.1 Example 1 

In the first example, we concern a through-thickness crack bar specimen of 



thickness t, width w and total height 2h, with a crack length a through the 
thickness as shown in Fig. 6. The ends of specimen are subjected to a uniform 
uniaxial tensile stress   in the y-direction, perpendicular to the crack. The 
meshes are shown in Fig. 7. The normalized stress intensity factors, (i.e. 

/IK a  ) for t/a=2, w/a=3, h/a=1.75 along the crack front are illustrated in 

Fig. 8 together with the results obtained by Raju & Newman [20] and Mi & 
Aliabadi [10]. ‘DBEM with regular triangular element’ represents that regular 
triangular elements are used around the singular point. ‘DBEM with new 
singular element’ denotes our proposed method. The stress intensity factor at the 
center of the bar evaluated by the proposed method is 2.82019. This value is 
within 0.24% of the plane strain solution in Ref. [21]. 

    
Figure 6: Geometry model of a through-thickness crack. 

  

Figure 7: Mesh model of a through-thickness crack. 
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Figure 8: Normalized stress intensity factors along the crack front. 

5.2 Example 2 

The vertex singularity depends on the value of Poisson’s ratio. In order to verify 
the versatility of the proposed singular element, a series of Poisson’s ratios are 
presented. The problem considered in this example is the same as that in example 
1. The stress intensity factors evaluated at the center of the bar with different 
Poisson’s ratio are shown in Table 1. v is the Poisson’s ratio and KI is the 
normalized stress intensity factor. It can be seen from Table 1 that accurate 
results can be obtained for different Poisson’s ratio. 
 
Table 1: Normalized stress intensity factors at the center of the bar with different 
Poisson’s ratios. 

  0.1 0.15 0.2 0.25 0.3 0.35 

KI 2.78054 2.78868 2.80190 2.82019 2.8437 2.8727 

6 Conclusions 

A new singular element with square root variation is proposed to analyze the 
through-thickness crack problem in this paper. The new element takes into 
account the special variation of the displacements in the neighborhood of the 
singular point. The proposed element has a vertex which coincides with the 
singular point, and these elements are collocated on the free surfaces rather than 
on crack surfaces. With the new singular elements, the special behavior of 
displacements around the singular point can be captured accurately. Numerical 
examples showed that more accurate stress intensity factor can be obtained by 



our proposed method within 0.24% of the plane strain solution. 
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